Känguru - Challenge Junior (ab 14 Jahren)
5 Fragen
Dieses Quiz wird bei jedem Aufruf neu aus Aufgaben der Kategorie "Junior" des \href{http://www.kaenguru.at/aufgaben.html}{Känguru der Mathematik} erstellt. $\\$ $\text{ }$ $\\$
Es richtet sich in besonderer Weise an Schüler*innen der 9. und 10. Schulstufe.
Weiter
Känguru - Challenge Junior (ab 14 Jahren)
4 Punkte
Jeder der abgebildeten Drähte besteht aus $8$ Stücken der Länge $1$. Ein Draht wird genau über den anderen gelegt, sodass sie sich teilweise decken. Was ist die größtmögliche Länge der deckenden Teile? \includegraphics[width=0.7\textwidth]{aabgebildete-draehte.png}
7
3
4
5
1
Känguru - Challenge Junior (ab 14 Jahren)
4 Punkte
Der Graph der Funktion $f$, die für alle reellen Zahlen
definiert ist, besteht aus einer Strecke und zwei Halbgeraden
(siehe Abbildung). Was ist die Menge aller Zahlen $x$, für die
$f(f(f(x)))=0$ gilt? \includegraphics[width=0.5\textwidth]{graph-der-funktion.png}
$\{ -16, -12, -8, -4, 0 \}$
$\{ -12, -8, -4, 0 \}$
$\{ -4, 0 \}$
$\varnothing$
$\{ -8, -4, 0 \}$
Känguru - Challenge Junior (ab 14 Jahren)
Wird geladen...
von Punkte
Das Quiz wird bei jedem Aufruf neu zusammengestellt. $\\$
Viel Spaß dabei!
Beenden
×